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Abstract. We apply tabu search techniques to the problem of determining the optimal config-
uration of a chain of protein sequences on a cubic lattice. The problem under study is difficult
to solve because of the large number of possible conformations and enormous amount of compu-
tations required. Tabu search is an iterative heuristic procedure which has been shown to be a
remarkably effective method for solving combinatorial optimization problems. In this paper, an
algorithm is designed for the cubic lattice model using tabu search. The algorithm has been tested
on a chain of 27 monomers. Computational results show that our method outperforms previously
reported approaches for the same model.
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1. Introduction

The determination of the three-dimensional structure of a protein from a given
sequence of amino acids is one of the most challenging unsolved problems in the
science of molecnlar biology (see e.g. [22, 28, 2]). There have been many computer
models designed to solve the protein folding problem. It is essential for these mod-
els to simulate the mechanism of protein folding and to search the native states
of a chain of protein sequences. The basic difficulty in solving these models is the
existence of multiple local minimizers. All computer models, though employing
different types of energy minimization, can be expressed as the global optimiza-
tion of a non-convex potential energy function. Recently, there have been various
approaches [3, 16, 27] used to solve these models arising from protein folding. A
survey of these approaches can be found in Pardalos, Shalloway, and Xue [19, 20].

Recently, lattice models have been used by many researchers to describe the pro-
tein folding mechanism {23, 13, 17]. This is motivated from two aspects of research
interests. On one side, scientists (with practical insight} are haping to use some
lattice structures to obtain initial solutions of protein conformations, with the as-
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sumption that an optimal or near-optimal native state can be obtained by relaxing
the monemers around the lattice structure [17]. On the other side, not uuder-
standing the mechanism of protein folding, scientists grasp protein confurmatious
by using lattice models. Tt does not mean that these particular lattice models can
describe the protein folding problem in detail, but they can actually address the
keen mechanism of protein conformation. Among these models, the lattice model
of a chain of monomers freely joincd with a unit bond length on a simple enbic
lattice [24] (see Fig. 1) has been studied in a series of papers [24, 23, 25, 26]. In
this paper, we study this modcl using tabu search and test our approach with a
chain of 27 monomers.

Figure I. Lattice model of 27 beads.

First, we introduce some definitions of the lattice model. Given two lattice sites
m and n, D(m,n) is used to express the distance between these two sites. We say
D{m,n) = L, if two sites m and n are neighbors in the lattice {and D(m,n) = 0,
otherwise}. For a protein chain with n monomers, we ranked it with the set A/
= {1,2,...,n} according to the order of the protein chain. A permntation p =
{v1,vz, ..., 5} & I is used to describe the lattice sites where each monomer is
positioned, and Il is the set of all permutation of A'. Therefore, the space of
all possible conformations of the chain corresponds to a subset of all permutations
IIp. The energy of the protein chain is the following [23] :
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n
En= ) Bij D(vi,v;) (1)
ij=1

where D(v;,v;) is the distance between two lattice sites v; and v; at which two
monomers ¢ and j are positioned, and the interaction energies B;; are obtained
from a Gaussian distribution:

P(B;;) = (2n B*)"Y* exp(—BE, /2 B?) (2)

where B is the standard variance. Different chain sequences have different sets of
B; ; generated according to P(B; ;) given above. We only allow one monomer of
the chain positioned at each lattice site. Thie ie called self avoiding. We say that
the conformation is compact if D(v;,viy1) = 1 for any two successive monomers in
the chain. A compact self-avoiding conformation is actually a Hamiltonian path.
Hence, to find a native state of the compact self-avoiding conformation of the chain
we must search for a permutation which minimizes the energy of the chain, This
can be described as the following global optimization problemm:

min Bi}j D(’UI ' ’Uj), (3)
pelly &
£i=1
where the minimization is understood over a subset of permutations. Two monormers
interact if they are not successive in sequence and are at unit distance from ecach
other [24].
There are several methods to solve this model [23, 25, 24]. In this paper, we

design a new algorithm using tabu search.

Tabu scarch, developed by Glover [7, 8], is an adaptive iterative search procedure
that has heen found to be remarkably effective for a spectrum of combinatorial and
continuous optimization problems [1, 9, 4]. Previous studies show that for many
relatively large size problems, tabu search is better than simulated annealing both
in the time required and in the quality of solutions found. Tabu search makes
some modifications during the local search process. Starting from a randomly sc-
lected solution, tabu search accepts a best solution from candidate solutions in the
neighborhood of the current solution. This best solution becomes the next current
feasihle snlntion, and the iterative process restart from it. During each iterative
process, tabu search intelligently learns information from previous iterative pro-
cesses, and the procedure moves step by step until an expected minimnm {or near
minimnm) is found. To avoid searching cyclically to recently visited solutions and
continue to search without becoming entangled, the management of all modifica-
tions is made through tabu condition and the aspiration level function [7, 8].

[n this paper, we first discuss the general principle of heuristics for global opti-
mization problems, and analyze two heuristic strategies: simulated annealing and
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tabu search. In section 3, we consider a different approach to design the new algo-
rithm for the lattice model of protein folding. We explain how to use tabu search
for the lattice model, and in section 4 present. our computational resnlts Finally,
in section 5 we make some conclusions.

2. Heuristic Procedures

We consider the general form of global optimization problem:
Minimize f(z):z € X C ®", (4)

where [ is the real-value objective function : X — R, and X is the set of feasible
solutions. We musl compute a feasible solution 2* € X for which the value f(z*) is
the global minimum. For each solution » € X, we are referred o the neighborhood
of z, denoted N(z), as the set which consists of all feasible solutions that can be
obtained by applying a modification of z, generally called a mowve. Specifically, we
consider a set, denoted M, , of pre-designed moves acceptable at solution z, from
which we can obtain a new solution #' = 2@ m, where m € M, . Therefore,
mathematically we have N{z)={z'|¢' = 2 m,Idm € M, }.

Throughout the following sections a solution x and the related move determine
each other, We say a sclution or move 2z € N(z)is “improving” or “non-improving
T f(x')— f{z) <0 or f(x') — f(x) > 0, respectively.

To design an optimization algorithm we consider the construction of an initial
solutlion, the local search process, a stopping criterion, and complexity {required
computational time). Much work has been done on these aspects over the past
several years [10, 11, 21]. For most cases, difficulties occur because the computa-
tional time increases exponentially as the size of the problem increases, and it is not
always necessary or possible to use exact algorithm searching for the best solution
in reasonable time, especially for most problems arising from industry. Because of
these reasons, various heuristic (some local} search techniques have been developed
by which we cau obtain acceptable sub-optimal solutious in limited computational
time. The most used among these heuristics include: genetic algorithms (6], sim-
ulated annealing [12], tabu search [7, 8] and grasp [3]. A terse review on heuristic
technigues can be found in Feo and Resende [5].

A fundamental requirement for computational techniques to solve global opti-
mization problems is their ability to escape from local traps and continue to search
for an optimal or near-optimal solution, whatever the initial solution is. For a given
starting solution x, traditional methods use an lmproving solution @' € N{x) w
produce a new solution and return the best solution which they first encounter.
In such cases, the best solution found may not be a global minimum and is very
sensitive to the initial solution. Furthermore, these methods are unable to continue
the search when they reach a local minimizer.
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Contrary to conventional approaches, given a solution z, some non-improving so-
lution ' € N(z) (1. e. f(z’) > f(x) ) should be acceptable iu order to have
the chance for the heuristic to compute an optimal solution. Simulated anneal-
ing uses a straightforward technique. Besides accepting an improving solution,
simulated annealing allows non-improving solutions. For a giveu solution x in X,
simulated annealing generates a single solution 2’ € N(x), and if the solution is
non-improving accepts it with certain probability (using a probability distribution
that depends on f(z) and f(2') with the control of a temperature parameter [12]).
Simulated annealing is actually a stochastic iterative approach.

Tabu search shares similar ideas with the simulated annealing. However, the key
difference is that tabu search is a local search heuristic but simulated annealing
is not. Although tabu search also accepts both improving and non-improving so-
lutions, the tabu search emphasizes the importance of the local search iterative
strategy, which works better than such blind search as simulated annealing does.
By using specific prescribed conditions which are known as ¥ tabu conditions ”,
a certain move is considered to be acceptable when it satisfies such a condition;
otherwise, it is considered to be tabu during the “ tabu period ”, the predefined or
dynamically managed number of iterations. The set of tabu moves is called “ tabu
list ” which forbids cyclic search of recently visited solutions. The tabu list size
plays a role in producing goad solutions. If the tabu list size is too small, the search
procedure will be trapped among recently visited solutions; If the tabu list size is
too big, the search procedure will be prevented from finding interesting solutions
not yet encountered. There is no single standard approach to defiue a tabu list size
for all problems. For different applications or stages of the search procedure, tabu
list sizes can be fixed, dynamically managed, or both during the entire procedure.

To continue the search for a global optimal or near optimal solution, the aspira-
tion level function is defined. If a tabu move satisfies the aspiration level function,
it becomes acceptable even if it is non-improving compared to the current best
golution. Tabu search procedure is an intelligent search procedure, because at each
iterative step it learns from previous information of the iterations, searches all ac-
ceptable moves (candidate solutions or sample solutions) in a certain neighborhood
structure, and then finds a best solution {even if it is a non-improving). This best
solution becomes the starting solution for the next iterative stage until it satisfies
some stopping criteria.

We can describe the framework of tabu search by the following pseudo-code:

begin
choose an initial solution s € X.
Bestsolution = s
Desteost .— f(s)
Tabulist =0

while stopping criterion is not satisfied do:
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Generate a candidate solution set V' C N(s)
Choose the best s/ in V
Put the move that leads s to & in Tabulist
s:=s§
if f(s) < Bestcost then
Restsolution :— ¢
Besteost = f(s)
end then
end
return Bestsolution
end

Observe that, for a given solution s, the candidate solution (or sample solution)
set V C N(s) should include s’ € N(s) which does not belong to the tabu list
or which satisfies the aspiration level function. General possible stopping criteria
considered are the following:

1. The best (known) optimal solution is found.

2. The number of iterations exceeds the maximum number of iterations (we have
initially specified).

In the next section, we will give a new definition of a neighborhood and describe
how the tabn heuristic will be applied to the lattice model.

3. A Tabu Search Based Algorithm for Protein Conformation

The principal difficulty of the protein conformation of the lattice model discussed
above, like most other global combinatorial optimization problems, is the existence
of multiple optimal. For a chain of n monomers with coordinate number z, there
are z™ possible conformations, while the number of all compact conformations is of
order of (z/e)", see e. g. [23]. We have discussed general principles of how to design
a global search procedure, but there arc still many techniques which we must use
especially when we try to solve combinatorial optimization problems because tabu
search 1s only a local search iterative strategy. Among these techniques, the tactical
definition of a “ move ” and “ neighborhood * arc very important [15, 14]. Different
definitions of neighborhood and move have a different impact on the effectiveness
of a certain algorithm, There have been two types of moves to solve the lattice
maodel previously discussed [23, 25]. Multiple occupancy uses a penalty function to
prevent one or two monomers fromn being located at the same lattice site[23]. A
self-avoid move is selected at random while it conserves the unit bond length and
does not produce more than one monemer in the same lattice site [23].

Next, we consider a different definition of move and search and a relatively com-
plex neighborhood structure. The conformation space includes all possible compact
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self-avoid conformations. As we know, a compact self-avoiding conformation of the
lattice model is actually a Hamiltonian path. We consider a shightly general case.
Let us think of the lattice aa a graph ¢ = (V| E), where V is the set of all lattice
sites and E is the set of all edges which connect any two lattice neighbor sites.
Yv € V, d(v) express the degree of v and N(v) is the neighborhood of v. In the

case discussed we have d(v) > 3, for any v C V.

Given a chain of n monomers with a ranked set &' ={1,2,...,n}, we use the
vertices wy,vy,. .., v, to describe the lattice sites in which monomers arc positioned.
Let us consider the permutation p = {v;,v2, ,v,}. Then a Hamiltonian path can
be referred as a permutation p = {v;,vg,...,v,} which satisfies the condition that
for any two succegsive monomers in the chain, their lattice sites arc neighborhoods.
For a permutation, or in other words, a Hamiltonian path p = {vy,vs,...,v,},
Vi, k' € z* withk < k', if D(vg,vp) = 1 and D(ve41,v4,) = 1, we can join
edges of ((ug, v ) and ((vag1, vy, ), and then delete edges of { vg, ve4q ) and {
Upt, Uy ) in the Hamiltonian path. Therefore we have a new Hamiltonian path
(see Fig. 2). Let us denote the above edge patch technique, also called move, as ;
then we have the following:

m(J) = vy e j:k,k—#l,...,icr
and the new Hamiltonian path can be written as :
pr = {vi,ve, ... vg, m(k + 1),...,w(kf),vkrﬂ,...,vn}

In this way, we can define the neighborhood structure for a given chain:

N(p) =A{x|37m . pr=pPn)

Figuwaer 9 LEdge patching for Hamiltonian pathe.

Obviously, the above neighbors are defined only for a Hamiltonian path with fixed
terminal vertices, so we continue our work on how to change the terminal vertices
of a Hamiltonian path.
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Because of d(v) > 3 for any v € V| given a Hamiltonian path p = {v1,ve,...,vn},
there must be vk, vgr € V which satisfy vy € N(vg) — {ve—1} and v, € N{v,r) —
{”k’+1}: respectively. Then we also can operate edge patching: deleting edge
{vk~1,i) of (¥, v ;) and joining edge (v, v¢) or (vy=,v;) in Hamiltonian path
(see Fig. 3). We can formally denote this kind of patching as T

ﬂ'f(j):'uk-—j j=1,...,k—1
and
’ﬂ"(j) =th_p_14; J=k+1,...,n

Thus, we have two new Hamiltonian paths:

!

1 i
Pt =M Mo T, Y1, -, VR )

and

! '
P = {‘!)1,’!)2:...,Ukl,ﬂk:+l,...,77ﬂ}.

begining paint

k-1

/ k+l
e o= »

end point k

Figure 3. Edge patching for Hamiltonian paths with different terminal points.

Note that our edge patching is not constrained to the lattice model that we
consider. In our implementation, instead of a single tabu list, we use two tabu lists:

1. T1 is a list of all tabu edge patches or moves for a path with fixed starting and
terminal sites; |T'1} is the number of recently visited solutions, called the size of
the tabu list T'1.

2. T2 is alist of starting and terminal sites from which we can generate a Hamil-
tonian path, and |T'2| is the size of the tabu list 72.

Both |71} and |T'2| are managed dynamically during different calculating stages.
The algorithm 1s described by the following pseudocode:

Input
B(ij), B(iJ)

|T1)=size of T'1 with fix terminal vertexes
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|T'2|=size of T2 for different terminal vertices
Mazlieration Number=maximum number of iterations between two improvements
of the funetion
MazIteration Numberl=maximum number of iterations between two improvements
of the function
Bestlteration Number= the number of itcrations when the solution improved
Bestlteration Numberl= the number of iterations when the solution improved
when terminal points are fixed
Initialization
generate a Hamiltonian path s
Iteration Number = 0 {iteration counter)
T2 =0
RestSolution = s
While (Iteration Number — Bestlteration Number) < MazlterationNumber)
Ieration Number = Iteraiion Number 4 1
for a path s0 with fixed terminal vertices generated in neighbors of s
T1:=9
fteration Numberl = 0 (iteration counter)
BestSolutionl = s0
while(lteration Numberl — BestIteration Numberl) < MazIterationNumberl) d
Iteration Numberl = Tteration Numberl 4 1
8" = 50
let s” be the best solution so far in the neighbor of s
npdate the tabu list T'1
if f(s") < f(BestSolutionl) then
BestSolutionl = &'
BestlterationNumberl = lteration Niumber|
end then
Sl’l = SI
end do
return BestSolutionl
end for
let 500 be the best solution so far found
update the tabu list T2
iff(s00) < f(BestSolution) then
BestSolution := 500
BestIteration Number = Iteration N umber
end then
s := s00
end While
output Bestsolution
end
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4. Computational Results

The algorithm was implemented in C and the computational results have bheen oh-

tained on a SUN SPARC 10 workstation.

Table 1. Results for sequences 1-100

| sequence | TABU | SAM || sequence | TABU | SAM

1 «75.25 | -75.17 51 -73.68 | -T3.68

2 | -81.02 | -81.02 52 | -75.92 [ -75.92

3] -76.69 | -T7.44 53 | -77.00 | -77.00

4 | -79.67 } -80,19 34 | -75.18 [ -77.54

5| -80.68 | -80.68 55 | -76.68 | -76.06

6 [ -77.99 | -77.99 56 | -75.50 [ -75.59

7| -74.65 | -V5.57 57 | -79.44 | -77.73

8 | -76.83 | -76.57 58 | -75.03 [ -75.03

9| -76.79 | -76.79 59 | -76.82 | -76.82
10 | -71.34 | -70.53 60 | -77.26 ;| -T7.26
11 -73.74 -72.87 &1 -80.20 -81.20
12 | -77.92 | -77.92 62 | -80.83 | -80.83
13 { -74.71 | -72.83 63 | -74.32 { -74.32
14 | -76.42 | -76.38 64 § -76.03 | -76.03
15 1 -77.18 | -T1.58 65 | -76.67 | -76.67
16 -78.40 -78.40 GG -72.9G -72.62
17 § -78.63 | -78.63 67 | -80.93 | -80.93
18 | -76.02 | -76.02 68 | -79.70 | -79.69
19 | -T2.56 | -72.56 69 | -79.45 | -79.23
20 | -72.03 | -T2.03 70 | -74.09 [ -74.09
21 -80.30 -8U.39 71 -74.26 -74.26
22 | -T3.77 | -76.33 72 | -76.16 | -76.16
23 | -75.61 [ -74.23 73 | -76.18 | -73.38
24 | -70.38 | -70.38 74 | -71.79 | -70.86
25 | -T7.03 | -77.03 75 | -75.64 | -75.64
26 | -73.33 | -73.33 76 | -81.75 | -81.75
27 | 7715 | -76.30 77 | -74.62 | -T4.62
28 | -82.05 | -82.05 78 | -75.95 | -75.562
29 | -77.82 | -77.82 79 | -72.42 | -72.42
30 -77.84 -77.57 8]0 -74.95 -Th.46
31 | -78.07 | -77.88 81 | -75.78 | -75.78
32 | -74.24 | -74.24 82 | -7T1.48 | -71.48
33 | -75.57 | -75.57 83 | -73.94 | -73.94
34 | -7817 | -7817 84 | -75.83 | -75.33
345 -80.11 -80.11 35 -80.20 -80.,20
36 1 -74.39 | -74.39 86 | -73.43 | -72.46
37 | -76.84 | -T5.88 87 | -79.09 | -79.09
38 | -80.90 | -79.83 88 | -74.91 | -74.91
39 | -72.68 | -72.68 89 | -75.27 | -75.17
40 -To.Uo -75.03 90 -76.70 -76.46
11 -82.30 | -82.30 91 | -72.85 [ -70.99
42 | -75.31 | -75.58 92 | -77.34 | -79.36
43 | -77.76 | -7T7.75 93 | -76.558 | -79.04
44 [ -78.91 | -78.91 94 | -78.07 | -77.16
45 | -81,18 | -81.18 95 | -T5.65 | -75.65
46 | -75.21 -75.06 96 | -79.19 | -79.19
47 | -78.04 | -78.20 97 | -68.94 | -68.85
48 | -73.55 | -73.26 98 | -76.80 | -76.80
49 -74.08 =718 Qg9 -76.91 -74.23
50 | -73.99 ; -T3.99 100 | -75.24 | -T4.83
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Table 2. Results for serquensces 101-200

| sequence | TABU | SAM || sequence | TABU | SAM
m -7TR.33 | -73.02 151 -73.12 -73.12
102 | -76.80 | -76.80 152 | -71.52 | -72.67
103 | -79.36 | -79.36 153 | -74.49 | -74.49
104 | -79.15 | -T7.19 154 | -81.49 | -B1.49
105 | -75.41 | -79.45 155 | -71.29 | -T1.18
106 -72.68 76.20 156 75.B8 -75.85
107 | -79.31 | -79.31 157 | -70.63 | -70.63
108 | -76.22 | -76.99 158 | -74.55 | -74.27
109 ¥ -76.50 | -76.18 159 | -71.98 | -72.09
110 | -76.25 | -76.25 160 | -74.71 | -74.01
111 -74.07 | -T4.07 161 -75.87 | -75.09
112 | -78.20 | -78.21 162 | -77.33 | -77.33
113 | -71.27 | -71.27 163 { -74.90 | -78.88
114 | -79.38 | -79.38 164 | -68.70 | -G8.70
115 | -82.94 [ -81.13 165 | -73.61 | -73.61
116 =TT ~77.22 166 -11.22 ~71.22
117 | -82.79 | -81.54 167 | -74.82 | -74.82
118 | -77.24 | -79.92 168 | -81,96 | -77.87
119 | -77.08 | -75.25 169 | -78.84 | -78.71
120 | -84.58 | -84.58 170 | -74.60 | -T4.60
121 | -73.91 | -73.91 171 | -83.61 | -83.26
122 -75.25 | -75.25 172 -77.30 | -77.30
123 | -73.43 | -72.58 173 | -73.24 | -71.36
124 § -78.82 | -78.82 174 | -72.28 | -70.84
125 -74.03 -74.03 175 -7R.RR -7H.B8
126 1 -79.44 | -79.44 176 | -80.32 | -80.32
127 | -76.30 | -74.86 177 | -73.68 | -72.68
128 | -73.84 | -77.84 178 | -72.68 | -72.76
129 | -79.85 -79.85 179 -74.66 | -74.66
130 ~-81.02 -78.54 180 -79.53 79.50
131 -80,26 | -80.26 181 + -76.04 | -75.19
132 | -76.99 | -76.99 182 | -72.69 | -71.00
133 | -76.03 | -76.04 183 | -77.21 | -76.35
134 | -7T4.31 | -74.31 184 | -84.11 | -84.11
135 ~77.98 -7T7.98 185 -78.08 -76.87
136 | -74.36 | -74.36 186 | -72.67 | -70.62
137 | -72.62 | -71.83 187 | -78.78 | -T8.78
138 -75.82 | -76.56 188 | -78.51 -77.44
139 | -79.19 [ -7B.82 189 | -70.67 | -70.14
140 | -81.96 | -81.96 190 ( -77.71 | -76.42
141 ¢ -72.65 | -71.25 191 -73.64 | -73.46
142 -79.74 | -79.74 192 -76.40 | -76.40
143 | -72.03 | -72.03 193 | -76.11 -75.66
idd4 | -74.09 | -74.29 194 -72.48 | -72.46
145 | -77.45 | -77.45 195 WTTTT O -TTTT
146 | -74.34 | -74.34 196 | -76.02 | -75.17
147 | -81.75 | -81.75 197 | -78.06 | -75.87
148 | -75.70 | -73.37 198 | -75.02 | -74.96
140 -72.40 -73.25 109 -77.50 7620
150 | -75.57 | -75.57 200 | -79.69 | -79.69

The tabu search applied to the lattice model is outlined in section 1. We tested
our algorithm using the same original data in [24]. Among 200 protein sequences
which we tested, only few sequences are worse than the results previously reported.
For all other cases we obtained the same or better results.
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All computational results are presented in Tables 1 & 2. In the headings of the
tables, sequence is the number of protein chain, TABU is the solution obtained by
our algorithm, and SAM is the solution ubtained by the method described in [23].

5. Concluding Remarks

In this paper we developed and implemented the tabu search heuristic applied to
the lattice model outlined in the introduction section. We tested our algorithm
using the same data given in [24]. Among 200 protein sequences which we tested,
only few sequences are worse than the results previously reported. In all other cases
we obtained the sarme or better results. As we discussed above, there is no standard
way to define the size of the tabu list. This is an important computational issue
regarding the quality of the best solution found. Other parameters such as the
maximum number of iterations between two improving solutions and the number
of iterations during which a move is tabu (i.e. tabu period) are also difficult to
determine. The effectiveness of using tabu search heuristics depends greatly on the
insight into the practical problem we want to solve and numerical experimentation.
Therefore, extensive computational experimentation is needed to improve the effi-
ciency of the algorithm presented in this paper. In our current implementation, we
tried to mauage the tabu size dynamically and fixed, and observed the relationship
between tabu list sizes and the best solution found. In our tabu algorithm, we
tested only the short terrn memory. To fnrther improve the performance of the
algorithm, the introduction of concepts snch as long term memory, diversification
of search, and oscillation should be incorporated and implemented. This is part of
our current investigation. Furthermore, larger classes of problems can be solved by
implementing tabu search on a parallel computer environment [18].
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